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Abstract 

Summary:  

We present ATAV, an analysis platform for large-scale whole-exome and whole-genome 

sequencing projects. ATAV stores variant and coverage data for all samples in a centralized 

database, which is then efficiently queried by ATAV to support diagnostic analyses for trios and 

singletons, as well as rare-variant collapsing analyses for finding disease associations in complex 

diseases. Runtime logs ensure full reproducibility and the modularized ATAV framework makes 

it extensible to continuous development of new functions. In recent years ATAV has not only 

been helpful for identifying disease-causing variants for a range of diseases, but has also 

enabled the discovery of novel genes by rare-variant collapsing on datasets containing more 

than 20,000 samples. Analyses to date have been performed on more than 110,000 sequenced 

individuals demonstrating that the framework is robust to large-scale studies.   

 

Availability and implementation: 

ATAV is open source, cross-platform compatible, and is available under the MIT license at 

https://github.com/igm-team/atav 

 

 

  

https://github.com/igm-team/atav


Introduction 
Diagnostic and cohort sequencing studies benefit from the analysis of a large number of 

samples combined with similarly processed controls. A common approach to reach the 

necessary scale for analysis is to use a joint-calling procedure and store all samples in a single 

VCF file. While effective in allowing a single analysis of all samples included in the single VCF 

file, this approach has significant limitations.  Perhaps most importantly, this approach is not 

amenable to ongoing analyses as new samples become available.  Moreover, when projects 

combine multiple cohorts that were not sequenced together and in which controls might be re-

used for several studies, the cost and time required to perform joint-calling for each analysis 

can become prohibitive. In addition to these considerations, typical sequencing file formats 

(VCF, BAM) place a sizeable overhead in moving these data from physical storage to the 

compute nodes for dynamic and multi user analysis needs. Furthermore, standard diagnostic 

and case-control studies leverage a range of filtering parameters, including variant calling 

(genotype quality, read coverage), variant annotation (gene, effect), internal population 

frequencies (minor allele frequency, genotype frequency) and external dataset filters 

(gnomAD1, RVIS2) to identify "qualifying variants" that meet a specific set of user-defined 

criteria. These sophisticated needs place an additional burden on creating an audit trail for re-

analyses and reproducibility. As the size and number of simultaneous users increase, ad-hoc 

analyses become prohibitively inefficient in the conventional single joint-genotyped VCF 

framework.  

To address these constraints and dynamic analyses needs, we have developed ATAV to 

streamline genomic analysis needs ranging from the standard diagnostic case interpretation to 

large-scale cohort analyses for disease-associated gene discovery. The ATAV platform is built on 

an open source relational database. The database (ATAVDB) is configured with a feature 

allowing data replication across a cluster of nodes. ATAVDB contains sample variant data, read 

coverage data, variant annotation data, external annotation data, and metadata. A data 

pipeline toolkit extracts variants, annotations and associated quality data from VCF files and the 

coverage and genotype quality from bam files. Currently the Institute for Genomic Medicine 

(IGM) at Columbia University has data of over 100K whole exomes, and the coding-regions of 

over 10K whole genomes stored in ATAVDB. It contains over 23 billion variant calls from over 

210 million distinct genomic co-ordinates and read coverage information for all samples. 

 

  



Database 
 

 

Figure 1: ATAV core database schema and external databases 

At the IGM, we use Percona Server for MySQL and its high-performance storage engine Percona 

TokuDB to improve scalability and operational efficiency. In the database, we store a universal 

variant list across all samples, annotation data that is annotated through ClinEff3, sample 

variants calls and associated quality metrics, as well as all site’s coverage data for inferring 

reference alleles at non-call sites. In addition to that, ATAVDB stores external databases such as 

allele frequencies from gnomAD1, ExAC4, or, DiscovEHR5, scores such as GERP++6, TraP7, 

LIMBR8, MTR9, RVIS2, subRVIS10, REVEL11, PrimateAI12, CCR13, as well as clinical annotations from 

ClinVar14,15, ClinGen16, HGMD17, and OMIM (see Figure 1). ATAV has an external data plugin 

code structure, which allows quick code integration of gene based, site based and variant based 

data.  

For efficiently storing coverage information for every site and every sample, the ATAV data 

pipeline parses through the bam files to generate read coverage data and converts site 

coverage values into bin values: a [0-9]; b [10-19]; c [20-29]; d [30-49]; e [50-199]; f >=200. A 

Run-length encoding procedure is used to further compress data within fixed 1000 bp block 

regions (see Figure 2). This way the data size is reduced by about 1000 times making it possible 

to store the coverage information for more than 100K samples. The information that has been 

loaded into ATAVDB has been determined over many years of applied use to be that 

information that is most often required for thestandard genetic analyses performed as part of 

both diagnostic genetic studies and gene discovery. For example, in diagnostic analyses for 

identifying de novo mutations in affected children, it is necessary to know that the parental 

samples have sufficient coverage at the relevant site, but not necessary to know the precise 

number of reads, leading to the binning strategy on coverage described above. For the vast 



majority of applications, we have found that the necessary information can be economically 

stored and retrieved as described.   

 

 

Figure 2: Per site coverage value converted into a fixed 1000 base pair length Bin string 

 

Platform architecture 
Users login to the head node to run ATAV jobs which will automatically allocate resources and 

submit jobs to the cluster (see Figure 3). A standard setup with a 6 node Sun Grid Engine (SGE) 

cluster (2x10 Cores, 128GB RAM) allows the running of at least 100 jobs at once. Each job will 

query a slave database with minimum database connections. Using a local customized 

bioinformatics pipeline, it is possible to continue loading new samples into the master database 

which will automatically replicate to all slave databases. 

 



 

Figure 3: Platform architecture – The user submits jobs to an SGE cluster, the ATAV job will then query to get data from 

replicated slave database 

 

Application 
The ATAV command line tool is the interface to ATAVDB. Written in java, ATAV consists of three 

modules. (i) The command line parser and query engine translate user defined parameters and 

the input sample list (in PLINK’s ped format18) into an efficient SQL query for interrogating the 

relational database, (ii) A runtime variant object creator parses SQL output into a collection of 

variant objects. Each variant object includes variant information (genomic coordinates, 

annotation), variant calls in sample list, sample genotype calls at co-ordinates without a called 

variant and external annotation data. (iii) A statistical analyses module iterates over the variant 

objection collection to perform downstream analyses. ATAV currently supports tests for 

diagnostic analyses such as identifying putative de novo and inherited genotypes of interest in 

trios, and a framework for performing region-based rare-variant collapsing analyses that 

identify genes or other genomic units that carry an excess of qualifying variants among cases in 

comparison to the background variation observed in internal controls of convenience in 

ATAVDB.  

The modularized ATAV framework makes it extensible to continuously develop new functions 

that operate on sequencing/variant data sets. Critical to data integrity, all ATAV analyses allow 

an auditable log of software and database version, filter parameters adopted, the input sample 

lists used in the specific run and the runtime logs that ensure full reproducibility.   



The analysts and researchers of the IGM, have run about 22,000 ATAV job within the last year. 

10,000 jobs completed in minutes, 9,000 jobs completed in hours, and the remaining 3,000 jobs 

completed within two days. 

The ATAV data browser is a web user interface that allows everyone within the network to 

access variant level data directly from the full data set in the ATAVDB. It supports the search of 

variants by gene, region and variant ID. The gene or region view displays a list of variants with 

allele count, allele frequency, number of samples, effect, gene etc. The variant view displays a 

set of annotations (effect, gene, transcript, polyphen) and details about variant carriers 

(gender, phenotype and quality metrics). It includes links to other public data resources such as 

Ensembl, gnomAD, ClinVar etc. and directly integrates additional annotations via APIs (e.g. 

Genoox Franklin API for clinical variant interpretation). The data browser has advanced filters 

such as a maximum allele frequency threshold to only search rare or ultra-rare variants, 

restriction to high quality variants or restriction to a certain phenotype. In contrast to many 

other platforms, the data browser is able to show newly added sample data in real time and is 

therefore evolving rapidly as more and more samples are sequenced. 

Example variant view 



 



 

Analysis 
Rare-Variant collapsing 
ATAV provides functions for all recommended steps of the rare-variant collapsing workflow 

recently summarized in Povysil et al. 201919.  

For the sample pruning steps ATAV creates the necessary input files by pulling data out of 

ATAVDB and automatically calls existing standard tools such as KING20, Eigenstrat21, or 

FlashPCA22. Since the coverage information for every sample and site is already efficiently 

stored in ATAVDB, ATAV can efficiently compare coverage between cases and controls and 

provides two different tests to perform coverage harmonization: sites can be removed if cases 

and controls show differing proportions of individuals with enough coverage23; or if a binomial 

test shows that the case/control status and coverage are not independent24. The outputs of the 

sample pruning and coverage harmonization steps can be used as inputs for dominant or 

recessive collapsing models. Within the collapsing model call, ATAV selects qualifying variants 

(QVs) that pass filters based on variant quality (Phred quality (QUAL), genotype Phred quality 

(GQ), quality by depth (QD), mapping quality (MQ) and variant quality score log-odds 

(VQSLOD)), variant annotation (effect, pathogenicity prediction scores, intolerance scores), as 

well as internal and external minor allele frequencies (MAFs). All QVs are used for building the 

collapsing matrix, a gene-by-individual indicator matrix with a 0 if there is no qualifying variant 

found in that gene in that individual, and a 1 if there is at least one. This collapsing matrix is 

used for looking for associations between genes with QVs and the phenotype of interest by 

using a Fisher’s exact test or Firth-based logistic regression. Finally, quantile-quantile (QQ) plots 

are created and the genomic inflation factor lambda is estimated using a permutation-based 

expected distribution of p-values.23  

A standard collapsing analysis usually consists of several different models that all capture 

specific types of QVs. While quality control (QC) filters are used for all models, other filters, 

such as the predicted variant effects or population allele frequencies, depend on the specific 

model in use. In order to speed up computation, ATAV provides the option of running a general 

collapsing model first using the QC filters all models have in common and relaxed allele 

frequency thresholds. The output of this initial model can be used as input for a collapsing-lite 

function that makes it possible to run the individual collapsing models within minutes since 

additional filters can just be applied to the previous output and the variant database does not 

have to be queried again. 

Diagnostic analysis 
All annotations and filters mentioned in the previous subsection such as QC filters or internal or 

external MAFs are also important for diagnostic analyses especially for singletons where we 



cannot use additional family information. In addition to that, ATAV provides special functions 

for trios and families to reduce the number of potential disease-causing variants in the final 

output.  

ATAV leverages information about family structure and affectedness status that is provided by 

the sample file (PLINK-style ped file). Multiple families can be analyzed at once and related 

controls are for example automatically removed when calculating control frequencies. 

Furthermore, the affectedness status is used to decide whether to look for inherited or de novo 

variants. 

In the standard trio case of one affected offspring and unaffected parents, ATAV uses a series of 

functions to extract de novo variants, newly compound-heterozygous or newly homozygous 

variants. For distinguishing compound-heterozygosity from variants that are in-phase, ATAV 

checks that both parents carry one of the qualifying variants. ATAV not only considers the 

genotype of the individuals, but also their coverage. If the coverage at a variant site is below a 

minimum threshold of 10 for any of the individuals the variant is still included in the output, but 

flagged as possibly de novo, possibly newly compound-heterozygous or possibly newly 

homozygous. Furthermore, ATAV identifies putative parental-mosaic variant transmissions. For 

each parent-child pair, it extracts all variants that were transmitted from parent to child where 

the variant in the parent has a low proportion of alternate alleles indicating mosaicism. 

ATAV also leverages an external annotation dataset called KnownVar, which combines 

information from multiple variant and disease databases (e.g. ClinVar14,15, HGMD17, OMIM, 

ClinGen16). The data is stored in ATAVDB and regularly updated. KnownVar annotations are not 

only included if the "exact" variant has been reported before, but also if a different variant at 

the same site has been linked to disease. Typical annotations include the associated disease, 

ClinVar clinical significance, HGMD Class and Pubmed IDs of relevant papers. In addition to that, 

disease associated variants in close proximity are extracted from HGMD and ClinVar. On a gene 

level, annotations include the total number of likely pathogenic or pathogenic variants of each 

category (copy number variation, small insertion/deletion, splice, nonsense, missense) in 

ClinVar, disease associations and inheritance from OMIM and dosage sensitivity from ClinGen. 

All the information provided by KnownVar can be used as additional information in the 

diagnostic setting to evaluate whether a variant can be considered as diagnostic for a specific 

patient. 

 

Result 
The collapsing framework of ATAV has enabled the confirmation of known and the discovery of 

novel genes in a wide range of diseases such as epilepsies25,26, sudden unexplained death in 

epilepsy27, congenital kidney malformations28, chronic kidney disease29, amyotrophic lateral 



sclerosis30,31, Alzheimer’s disease24, retinal dystrophy32, and idiopathic pulmonary fibrosis23. 

Furthermore the diagnostic framework has helped to identify both diagnostic genotypes in 

known genes and candidate genotypes in novel genes in a wide range of diseases including rare 

undiagnosed genetic disorders33,34, epilepsies35–37, alternating hemiplegia of childhood38, and 

chronic kidney disease39 

 

Conclusions and future directions  
 
We present ATAV as an analysis platform for large-scale whole-exome and whole-genome 

sequencing projects.  The most challenging aspect of the initial use of ATAV is that it needs to 

be used with ATAVDB and requires establishing a similarly structured database and loading into 

it the necessary data for retrieval. The advantages of the ATAV framework, however, are that 1) 

it allows continuous real time analyses of all samples loaded into the database without the 

need for computationally demanding joint calling preceding each analysis and 2) it allows 

convenient tracking of precise analyses performed.   

 

Our experience with this platform on a database carrying more than 100,000 samples indicates 

that a relational database can be optimized in a way that makes it possible to analyze current 

large-scale genomic datasets. Our current data processing and storage framework is robust and 

flexible when combining data from multiple projects and mixing exomes and genomes. ATAV 

supports diagnostic analyses for trios and singletons, as well as rare-variant collapsing analyses 

for finding disease associations in complex diseases.  Further optimizations are possible such as 

database sharding which is a horizontal partition of data in a database or search engine. Other 

potential solutions include storing the data in HDFS (Hadoop Distributed File System) and 

utilizing Apache Spark to do distributed cluster computing. This would allow the processing of 

large amounts of variant data in parallel at once speeding up computations and enabling an 

even further increase in sample sizes. The goal of ATAV is to work towards standardizing and 

optimizing storage and data processing for large scale sequencing data across multiple studies 

and to provide an easy to use interface for users with little computational experience while 

ensuring full reproducibility.  
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