Benchmarking an Automated Variant Classification Engine (aVCE) Algorithm Using ClinVar: Results of a Time-Capsule Experiment

Yaron Einhorn, MSc¹; Oron Lev, MSc¹; Moshe Einhorn, MSc¹; Amir Trabelsi, BSc¹; Nurit Paz-Yaacov, PhD¹; Susan J. Gross, MD^{1,2} ¹GENOOX, Tel Aviv, Israel; ²Icahn School of Medicine at Mount Sinai, New York NY, USA

ACCEPTED ABSTRACT

Introduction: DNA sequencing technology has evolved rapidly with the advent of high-throughput next-generation sequencing (NGS). To address challenges in NGS interpretation, a novel algorithm, which integrates human DNA sequences with phenotyping, has been developed, based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines (Richards S, et al. Genet Med 2015;17:405-24). Current guidelines published jointly by the Association for Molecular Pathology (AMP) and College of American Pathologists (CAP) strongly advocate for validation of pipeline tools and algorithms (Roy S, et al. J Molecular Diag 2017;doi: 10.1016/j.jmoldx.2017.11.00). To validate this novel automated Variant Classification Engine (aVCE), we performed a blinded time-capsule experiment to predict the ability of this algorithm to classify variants that were only uploaded to the ClinVar database after the time capsule cutoff date.

Methods: The ClinVar database is a publicly available archive of reports that details relationships among human variations and phenotypes, with supporting evidence. The aVCE was 'trained' on the ClinVar database (version 30-06-17). Variants with Reference/Submission ClinVar (RCV/SCV) creation dates before and after 01-07-16 were marked as 'Train' and 'Test,' respectively. Variants with ≥2 ClinVar stars were included in the 'Test' set. Using ACMG standards and guidelines for interpreting sequence variants, the aVCE was applied to the 'Test' set to classify variants as pathogenic (P), likely pathogenic (LP), uncertain significance (VUS), likely benign (LB), and benign (B). In accordance with the ACMG standards and guidelines, the aVCE algorithm has additional tiers for subclassification of VUS into 'variant of uncertain significance, leaning benign (VUS-LB), weak leaning pathogenic (VUS-WLP), and strong leaning pathogenic (VUS-SLP). Results also were characterized from a clinical perspective, i.e., clinically 'actionable' (P/LP) versus 'non-actionable' (VUS/LB/B) variants and benchmarked against the ClinVar classifications to determine performance characteristics (sensitivity and specificity).

Results: When compared against ClinVar submissions from clinical laboratories and high-certainty entries, the proprietary

RESULTS

A. aVCE Performance Characteristics

Final dataset

All Variants, N = 1,689

'Actionable' variants, n=1,271 *'Non-actionable'* variants, n=418

aVCE demonstrated robust sensitivity and specificity in classifying variants that were only uploaded to the ClinVar database after the time capsule cutoff date (Tables 1 and 2).

 Table 1. Benchmarking an automated Variant Classification
 Engine (aVCE) using a time capsule of the ClinVar database aVCE B IR VUS

ClinVar

D. Variants and ACMG Rules

avc	E application of ACMG rules	aVCE app ACMC	lication of Frules	avc	E application of AC
		Met	Unmet		
ACM	G rule/brief descriptor	n (%)	ACM	G rule/brief descriptor
PVS1	null variant where LOF known to cause disease	1,260 (99.1%)	11 (0.9%) ¹	PVS1	null variant where LOF kr disease
PS1	same amino acid change as a known pathogenic variant	0	1,271 (100%)	PS1	same amino acid change pathogenic variant
PM1	mutational hot spot and/or critical, well- established functional domain	3 (0.2%)	1,268 (99.8%) ²	PM1	mutational hot spot and/ established functional do
PM2	absent from control databases or with extremely low frequency	1,271 (100%)	0	PM2	absent from control data extremely low frequency
PM4	protein length changes due to in-frame deletions/insertions and stop losses	2 (0.2%)	1,269 (99.8%)	PM4	protein length changes d deletions/insertions and
PM5	novel amino acid change at the same codon as a pathogenic variant	0	1,271 (100%) ³	PM5	novel amino acid change codon as a pathogenic va
PP2	missense variant in gene with low rate of benign missense variation	5 (0.4%)	1,266 (99.6%)	PP2	missense variant in gene benign missense variatio
PP3	multiple lines of computational (in silico) data support deleterious effect	7 (0.05%)	1,256 (99.5%)	PP3	multiple lines of computa data support deleterious
PP5	reputable source reported <i>P</i> , but unable to perform independent evaluation	0	1,271 (100%)	PP5	reputable source reporte perform independent ev
BA1	allele frequency >5% in control databases	0	1,271 (100%)	BA1	allele frequency >5% in c
BS1	allele frequency > expected for disorder in control databases	0	1,271 (100%)	BS1	allele frequency > expect control databases
BS2	observed in a healthy adult for disorder with full penetrance at early age	0	1,271 (100%) ⁴	BS2	observed in a healthy add with full penetrance at ea
BP1	missense variant in gene for which truncation known to cause disease	0	1,271 (100%)	BP1	missense variant in gene truncation known to caus
BP3	in-frame deletions/insertions in repetitive region with no known function	0	1,271 (100%)	BP3	in-frame deletions/insert region with no known fur
BP4	multiple lines of computational (in silico) data suggest no impact	0	1,271 (100%)	BP4	multiple lines of computa data suggest no impact
BP6	reputable source reported <i>B</i> , but unable to perform independent evaluation	0	1,271 (100%)	BP6	reputable source reporte perform independent ev
BP7	synonymous (silent) variant for which splicing algorithm predicts no impact AND nucleotide highly conserved	0	1,271 (100%)	BP7	synonymous (silent) varia splicing algorithm predic nucleotide highly conserv

_ _ _ _ _ _ ibution of 418 'Non-actionable' variants by tion of ACMG rules

		aVCE app ACM	lication of G rules
		Met	Unmet
ACM	G rule/brief descriptor	n	(%)
PVS1	null variant where LOF known to cause disease	0	418 (100%)
PS1	same amino acid change as a known pathogenic variant	0	418 (100%)
PM1	mutational hot spot and/or critical, well- established functional domain	13 (3.1%)	405 (96.9%) ¹
PM2	absent from control databases or with	229 (54.8%)	189 (45.2%) ²

aVCE classified clinically 'actionable' (P/LP) and 'non-actionable' (VUS/LB/B) variants with very high sensitivity (99.29%, 1262/1271) and specificity (100%).

Conclusions: The aVCE algorithm, even without input from clinical databases specific to the 'Test' set, could predict with very high sensitivity and specificity whether a variant in the future would be categorized as clinically 'actionable' versus 'non-actionable.' Algorithms that apply the latest computational methodologies to ACMG guidelines may assist variant scientists with classification and interpretation of variants, including those with limited clinical information.

INTRODUCTION

American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) 2015 **Standards and Guidelines for Variant** Classification¹

- Harmonize methods
- Reduce ambiguity between clinical laboratories
- Weighted rules related to:
- Variant frequency
- Variant type
- Association to previous reports for pathogenicity
- Consistency with inheritance model
- Require accessing/searching of multiple databases

Potential Benefits of Advanced Computational Methodologies

Aid scientists in accurately applying **ACMG-AMP** standards

Streamline data extraction related to phenotype, molecular sequence, and variant characteristics from existing databases

- Efficiently assimilate information from published reports of clinical aspects of variant classification
- Systematically and continually update information
- Remove current roadblocks in classifying variants, including automation of database and bioinformatics management

Novel automated Variant Classification Engine (aVCE)

- Based on ACMG-AMP standards and guidelines
- Utilizes AI technology

Secondary

research

- Integrates knowledge acquired from multiple databases and published literature on an ongoing basis
- Determines internal numeric classification score to facilitate VUS subclassification

Discern reasons underlying incongruence

Uncover areas in current classification

guidelines that may benefit from further

В	164	9	167		0	0
LB	1	1	76		0	0
LP	0	0	3		4	5
Р	0	0	6		1250	3
aVCE	'Actionable'	'Non-a	ctionable'	Sens	itivity	Specificity
ClinVar	(<i>P/LP</i>)	(VUS	S/LB/B)			
'Actionable'	1262		9	0.9	929	1
'Non-actionable'	0	4	418			

 Table 2. Benchmarking an automated Variant Classification
 Engine (aVCE) employing subclassification using a time capsule of the ClinVar database

aVC	E B	LB	VUS-LB	VUS	VUS-WLP	VUS-SLP	LP	Ρ
ClinVar								
В	164	9	69	98	0	0	0	0
LB	1	1	55	16	2	3	0	0
LP	0	0	1	0	0	2	4	5
Р	0	0	0	0	2	4	1250	3
aVC	E 'Actior	nable'	'Non-act	ionable	' Sensi	tivity	Specif	icity
ClinVar	(P/LP/VL	JS-SLP)	(VUS/	LB/B)				
Actionable'	126	68	3	}	0.99	976	0.99	28
Non-actionable	e' 3		41	5				

B. General Variant Effects

74.7% of variants represented LOF, most commonly frameshift and stop-gain effects (Figure 1).

- All LOF were P variants in ClinVar
- All intronic/untranslated region (UTR) and synonymous effects were B variants in ClinVar
- Most (71/77) missense variants were B, while 6/77 were P, in ClinVar

Figure 1. Distribution of variant general effects and ClinVar classification

Non-frameshift Indels

¹2, ²3, ³1, and ⁴2 variants flagged by aVCE (see Table 5)

Table 5 Details of variants flagged by aVCE

PM4	protein length changes due to in-frame deletions/insertions and stop losses	0	418 (100%)
PM5	novel amino acid change at the same codon as a pathogenic variant	0	418 (100%)
PP2	missense variant in gene with low rate of benign missense variation	22 (5.3%)	396 (94.7%
PP3	multiple lines of computational (in silico) data support deleterious effect	3 (0.7%)	415 (99.3%
PP5	reputable source reported <i>P</i> , but unable to perform independent evaluation	0	418 (100%)
BA1	allele frequency >5% in control databases	138 (33.0%)	280 (67.0%)
BS1	allele frequency > expected for disorder in control databases	29 (6.9%)	389 (93.1%)
BS2	observed in a healthy adult for disorder with full penetrance at early age	236 (56.5%)	182 (43.5%)
BP1	missense variant in gene for which truncation known to cause disease	7 (1.7%)	411 (98.3%
BP3	in-frame deletions/insertions in repetitive region with no known function	1 (0.2%)	417 (99.8%
BP4	multiple lines of computational (in silico) data suggest no impact	60 (14.4%)	358 (85.6%
BP6	reputable source reported <i>B</i> , but unable to perform independent evaluation	0	418
BP7	synonymous (silent) variant for which splicing algorithm predicts no impact AND nucleotide highly conserved	87 (20.8%)	331 (79.2%

¹4, ²6, ³6, ⁴16, ⁵43 variants flagged (see Table 5)

ACMG rule/brief descriptor No. of variants			Reason for flag					
PVS1	null variant where LOF known to cause disease	2 Actionable	Null variant where LOF is not known to cause disease					
PM1	mutational hot spot and/or critical, well-established functional domain	3 Actionable 4 Non-actionable	Region with a larger number of <i>P</i> than <i>B</i> variants, but not significantly higher					
PM2	absent from control databases or with extremely low frequency	6 Non-actionable	A single outlier database with common frequency (>5%), while all other databases report very rare (<1%)					
PM5	novel amino acid change at the same codon as a <i>P</i> variant	1 Actionable	Novel amino acid change within the same codon of a variant that was only reported (not confirmed) as <i>P</i>					
BA1	allele frequency >5% in control databases	6 Non-actionable	A single outlier database with common frequency (>5%), while all other databases report very rare (<1%)					
BS1	allele frequency > expected for disorder in control databases	16 Non-actionable	Frequency of 1%-1.5% in control public databases (somewhat higher than the very rare threshold of 1% for PM2 rule; rule met threshold is >1.5%)					
BS2	observed in a healthy adult for disorder with full penetrance at early age	2 Actionable 43 Non-actionable	 A single outlier database with common frequency; all other databases indicate very rare A single individual appearing as a homozygous in public control database 					

Primary

Validate the aVCE by performing a blinded time-capsule experiment to predict the ability of this algorithm to classify variants that were only uploaded to the ClinVar database after the time capsule cutoff date

METHODS

OBJECTIVES

automated Variant Classification Engine (aVCE)

- Provide automatic implementation of ACMG classification rules per currently available:
- Population, disease, sequence databases
- Published literature
- Classify variants as:
- <u>—</u> B Benign
- LB Likely Benign
- VUS Variant of Uncertain Significance
- *VUS-LB* Variant is classified as *VUS* according ACMG guidelines. More evidence found to support the variant as being B
- *VUS-WLP* Weak evidence for *P* but not enough for being classified as *LP* according to ACMG-AMP guidelines
- *VUS-SLP* Strong evidence for *P* but not enough for being classified as *LP* according to ACMG-AMP guidelines

Validation Experiment ClinVar database

between aVCE and ClinVar

- All normalized variants with Reference Accession Version (RCV) or Submission Accession Version (SCV) creation dates before 01-01-17 employed for building/ training the aVCE
- All other variants not overlapping with 'Training" dataset, including those with RCV/SCV creation dates after 01-07-16, were considered the 'Test' dataset for aVCE benchmarking
- To avoid false positives in the 'Test' dataset, variants with <2 ClinVar scoring stars were removed, as were VUS^2
- aVCE applied to the 'Test' dataset for variant classification
- (P, LP, VUS-SLP, VUS-WLP, VUS, VUS-LB, LB, B)
- aVCE results characterized clinically:
- 'Actionable' versus 'Non-actionable'³
 - 'Actionable' = P + LP
 - 'Actionable' = P + LP + VUS-SLP
 - All other variants considered 'Non-

C. Discordant Variants (Table 1)

• 'Actionable' = P + LP

- 9 discordant variants between ClinVar and aVCE

6 ClinVar <mark>P/LP</mark> variants	2 ClinVar <i>P</i> variants	1 ClinVar <i>LP</i> variant
classified as <u>VUS-SLP</u> by	classified as	classified as <i>VUS-LB</i>
aVCE	<i>VUS-WLP</i> by aVCE	by aVCE
Example: Variant (<i>P</i> for	Example: Very rare	Variant: Variant (<i>LP</i> for
"GLYCOGEN STORAGE	frameshift variant –	"ALPORT SYNDROME"
DISEASE" per ClinVar)	also a type of indel	per ClinVar) met the
met the PM1, PM2, PP2,	– that occurred	PM2, PP2, and PP3
and PP3 rules	in a gene not	rules for pathogenicity
Based on strong	documented to have	- also appeared in a
evidence for	a LOF pathogenic	single individual in a
pathogenicity, but not	variant – PVS1 rule	homozygous state in
enough for <i>LP</i> , the aVCE	not met	gnomAD exomes
aggregated prediction	aVCE aggregated	aVCE aggregated
score resulted in <i>VUS-SLP</i>	prediction score	prediction score
subclassification	resulted in VUS-WLP subclassification	resulted in <i>VUS-LB</i> subclassification

• 'Actionable' = P + LP + VUS-SLP

Only 6 discordant variants between ClinVar and aVCE

3 ClinVar LB variants classified as VUS-SLP by aVCE	2 ClinVar P variants classified	1 ClinVar <u>LP</u> variant classifie
	ac V/IS-W/IP by	ac VIIS-IR by

Interesting findings generated by the aVCE warranting further consideration

PSV1 Rule	PM1 Rule	PP3/BP4 Rules
Rule not met for 2 variants despite being LOF (gene not ecognized as one where LOF is mown disease mechanism) Going forward, as databases are continually updated, the aVCE vill be trained to identify any OF variant for such genes as neeting the PVS1 rule	 2 different variants <i>P/LP</i> for very rare diseases according to ClinVar appeared in a homozygous state in allegedly healthy individual in control databases Could result from: False positive in ClinVar classification False positive in control database Contamination of an affected individual in control database Not 100% penetrance or the existence of another protective variant 	 7 P missense (n=6) and splice region (n=1) variants and 102 B missense (n=71) and splice region (n=31) variants aVCE correctly called the PP3 rule for all 7/7 P variants compared with 3/102 B variants aVCE correctly called the PP4 rule for 60/102 B variants and none of the P variants. Remainder classified as VUS by the aVCE based on the PP3/ BP4 rules not being met aVCE's aggregated prediction score was sensitive and specific in classifying variants

CONCLUSIONS

- The aVCE algorithm, even without input from clinical databases specific to the 'Test' set, could predict with very high sensitivity and specificity whether a variant in the future would be categorized as clinically 'actionable' versus 'non-actionable'
- In instances of discordance, the aVCE tended to under-call a variant as VUS rather than label a variant LP or P with insufficient evidence
- Results support the ongoing use of the ACMG rules of evidences as a standard for variant classification
- Innovative approaches may allow for major advancements in variant classification, including those with limited clinical information, characterized by:
- up-to-the minute database access
- consistent weighting
- rapid delivery of clinically meaningful information

Such advances can:

- aid clinical and research laboratory professionals in the current era characterized by increased complexity of variant analysis and interpretation

Optional VUS subclassification - Some laboratories choose to subclassify VUS, particularly for internal use, a practice not considered inconsistent with ACMG-AMP standards and guidelines

Likely Pathogenic

Pathogenic

-LP

-P

actionable'

 Sensitivity/specificity of aVCE versus ClinVar database

2 variants – PM1, PM2, PP2 as vos-vvlr by as VUS-LD Dy aVCE aVCE rules met See above See above **1 variant** – PM2, PP2, PP3 rules met

Knowledge derived from powerful computational methodologies can augment the human expertise and judgment still required to deduce final variant classifications

- prove useful in future refinements of classification guidelines

ABBREVIATIONS	aVCE	automated Variant Classification	BS	benign strong	NGS	next-generation sequencing	RCV/SCV	Reference/Submission	VUS-SLP variant of uncertain significance-
ACMG American College of Medical	R	Engine	CAP	College of American Pathologists	Р РМ	pathogenic pathogenic moderate	IITR	Accession Version	strong leaning pathogenic
AI artificial intelligence	BA	benign stand-alone	LOF	loss of function	PP	pathogenic supporting	VUS	variant of uncertain significance	weak leaning pathogenic
AMP Assoc. for Molecular Pathology	BP	benign supporting	LP	likely pathogenic	PS/VS	pathogenic strong/very strong	VUS-LB	variant of uncertain significance- leaning benign	

REFERENCES Richards S, et al. Genet Med 2015;17(5):405-424.

Yang S, et al. Genet Med 2017;19(10):1118-1126. Harrison SM, et al. *Genet Med* 2017;19(10):1096-1104.